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Results are  shown of an experimental  study concerning the combustion p rocess  inside a pe t ro-  
leum bed and the mathematical  descr ipt ion of the t empera tu re  field in a tubular model of such 
a bed. The tes t  data are  compared  with calculated values.  

A t ravel ing combustion front  for the extraction of petroleum under l abora to ry  conditions is produced 
mos t  often in c i r cu la r  steel tubes filled with oi l -bear ing sandstone and equipped with igniting, insulating, 
and measur ing  devices [2, 3]. 

Tests  were  per formed with an apparatus shown in Fig.  1. The bed model consis ted of two coaxial 
tubes:  an inner one 100 mm in d iameter  and an outer  one 240 mm in d iameter .  The inner tube served as a 
shell to confine the o i l -bear ing sandstone and the outer tube served to retain the asbestos  insulation. The 
total length of the model was 1200 m m.  Eleven thermocouple wells spaced 120 mm apart  were installed 
along the model for  t empera tu re  measu remen t s .  

After the permeabi l i ty  of the porous medium had been determined, the e lectr ic  igniter and the inlet 
seg~ment of the model tube were  heated up to a 350-370~ tempera ture .  Then, a ir  f rom the tank was in- 
jected into the bed model under a 1-3 atm p re s su re .  When the ir~let t empera tu re  increased  rapidly, as 
indicated by an oil f lame, the e lec t r ic  heater  was switched off. 

The combustion p rocess  was monitored bythermocouple  readings as well as bythe  CO 2 and O 2 contents 
in the flue gas.  The p rocess  was controled by regulating the a i r  supply p r e s su re .  As the combustion front  
was progress ing ,  gaseous products  together  with water,  vapor, and oil were escaping f rom the model.  
We will show here  the initial data and the resul ts  of one such tes t  per formed with h igh-viscos i ty  oil f r o m  
Tatar  deposits (sandstone poros i ty  38.5%, permeabi l i ty  1.56 darcy,  oil saturat ion level 26.8% of the pores  
volume, water  saturat ion level 14.2% of the pores  volume, air  flow ra te  0.408 Nm3/h, mean velocity of 
combustion front  0.15 m/h ,  t empera tu re  at the combustion front 654~ sandstone density 1640 kg /m 3, 
combustible f ract ion of oil 48 kg per  1 m 3 of sandstone, interst i t ial  air  flow density 566 Nm 3 per  1 m 3 of 
sandstone, flue gas composi t ion:  3.64% 02, 10.39% CO 2, and 4.8% CO; oxygen util ization fac tor  81.1%, oil 
extraction fac tor  57.5%). 

In o rde r  to descr ibe  the t empera tu re  field, we make the following assumptions:  that the combustion 
front  at a given thermal  power (ur~like at a given tempera ture ,  as in [3]) t rave ls  at a constant velocity while 
the air  flow ra te  remains  constant;  that the t empera tu re  is uniform across  a radial  section; that the heat 
losses  into the surrounding medium are subject to Newton's law of heat t r ansmiss ion ;  that the thickness 
of the combustion front is negligibly smal l ;  that the heat is t r ans fe r red  along the tube axis by the t ravel ing 
front, by convection, and by conduction; that the thermophysical  proper t ies  of the sys tem are not t e m -  
pera ture-dependent ;  and that the heat t r ans f e r  between sand grains and fluids impregnat ing them occurs  in-  

stantaneou sly.  

Based on the heat balance for  this tube under such conditions, we obtain the following differential 
equation for  determining the t empera tu re :  

OZT PaCa u OT 2k (T - -  T~,) =: 1 . ~T UPaN~ 5 (x - -  vl) (1) 
c)x ~ ~ Ox ~R V at 
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Fig. 1. Schematic diagram of the laboratory appara~as for study- 
ing the combustion of petroleum in a tube: (1) lid, (2) jacket,  (3) 
stopper, (4) thermocouple well, (5) electr ic  heater ,  (6) oi l-bearing 
sandstone, (7) model shell (combustion tube), (8) air  thrott le,  (9) 
checking and measur ing  ins t ruments  for the e lectr ic  heater ,  (10) 
e lec t ro thermometer ,  (11) and (12). separators ,  (13) gas analyzer ,  
(14) gas counter, (15) compressed-a i r  tank. 

with the following initial and boundary conditions: 

T := T,~ exp (-- bx) --',= T O at t = O, 

T :-= T.s at x := 0, T = T O at x-+ oo. 

We now introduce the dimensionless pa ramete r s  

=: (T - -  To)/(T~ - -  To), x == XgaCaU/L, 

a = 2k/RtPp~Ca, x :: VPsCs/UCa9 a, A ~ N o g / ( T ~ - -  To)c a, 

b 1 := b2~/ugaCa 

and write Eq, (1) accordingly: 

Ox 2 Ox at • \ •  

2 9 
i-= /u2pa C-a/Xqps, 

Equation (3) together with conditions (2) is solved by the Laplace operational method [1]. 
all intermediate  steps, we will show only the final solution for the tempera ture  in the bed model: 

r T o = - l ( T ~ - - V o ) [ e x p ( - 2 " x V 4 + a ) e r f c ( ~ x i ~  ~- 

2 V7 

"- ) ) 1  Noe {e~?: [e2T 
�9 C a  ] - -  , 

-1 

(2) 

(3) 

Omitting 
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Fig. 2 Fig. 3 
Fig .  2. T r a n s i e n t  t e m p e r a t u r e  d i s t r ibu t ion  (~ as  a funct ion of the  d i m e n -  
s i o n l e s s  d i s t ance  and t i m e ,  a c c o r d i n g  to f o r m u l a  (4) with a = 3.25 and 
----1. 

Fig .  3. C o m p a r i s o n  be tween  m e a s u r e d  t e m p e r a t u r e s  of the bed m o d e l  (~ 
with the v a l u e s  ca lcu la t ed  a c c o r d i n g  to f o r m u l a  (9): t e s t  va Iues  5 .6h  (1)and 
6.4 h (2) a f t e r  the  s t a r t  of c o m b u s t i o n .  D i s t ance  x (m).  

e ̀~ 1 x "1 [ - ;  +o +o.] o ,c +o + 

+ e x p  [ x l / / - +  , - ~ a + % ] e r f c r  x _ - ] ~ l , / i 4 + a - + - e % ) { - ] / ]  
. J [2~  F 

2 exp - - x  V 4 + bl ~-b~ 

- X 

• erfc q- + b~ -i- bl -t 
i. v t  v \ 4  

(4) 

whe re 

• I• - -  1 - -  V--(1 - • + 4a]. oh=-~-• [ z - - l q - ] / ( 1 - - •  % = ~ ,  

The  t r a n s i e n t  t e m p e r a t u r e  d i s t r i b u t i o n s  in a l i n e a r  bed shown in F ig .  2 have  been  ca lcu la ted  a c c o r d -  
ing to solut ion (4) w i t h a  = 3.25, ~t = 1, and N0g/c a = 3000~ The p r e h e a t i n g  of the  bed has  been  d i s r e -  
ga rded  in t h e s e  c a l c u l a t i o n s ,  i . e . ,  T m = 0 h e r e  and the pumped  a i r  h a s  been  a s s u m e d  to be  at a t m o s p h e r i c  
t e m p e r a t u r e s  (T s = T0). 

The  c a l c u l a t i o n s  show tha t  a t e m p e r a t u r e  p ro f i l e  in the bed  at  t > 3 b e c o m e s  s t eady  and i s  d e t e r -  
m ined  by the  loca t ion  of the  c o m b u s t i o n  f ron t .  Th is  i s  c o n f i r m e d  a l so  to be  the  e x p e r i m e n t a l  t e m p e r a -  
t a r e  c u r v e s .  

The s t e a d y - s t a t e  solu t ion  i s  ob ta ined  f r o m  (4) by le t t ing  the  d i f fus iv iW in th is  equat ion (y = X/CsPs) 
b e c o m e  inf in i te :  

T--To=(T~--To)exp[  - x ~ ( - l  + ] / - ~  1 

~- Cal l @ 4 a  z . 

1 (• ' 1 4a) g t - -  (5) -- exp -- ~ -v- I + . 
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From here ,  at ~ = ~ ,  we find the tempera ture  at the combustion front 

r ~ -  7"o = (r~ - -  To) exp - -  y (-- 1 + ~'1 + 4a) 

N~ [1 - -  exp (-- xt l/1 --~-4~-)]. (6) 
ca~ l + 4 a  

At T s = T o and after  a sufficiently long t ime, we have 

Ts  _ To N . g  (7) 
Cal t + 4 a  

With the t empera tu re  measured  at the combustion front,  we determine f rom this relation the d imen-  
sionless p a r a m e t e r  

I [  (N~ ] 
a = - -  1 (8) 

4 c~ (T ! - -  To) ~ 

In o rder  to compare the measured  and the calculated tempera ture  distribution in the model,  we 
represen t  Eq. (5) in dimensional form with Ts = To: 

l [  1 
T - -  T O = N ~  exp (x - -  v t ) (c  - -  ~ c 2 + 

c a ~ 1 -~ 4a 

where 

c = Capautk, ~ = 2 k p . R .  

If the values of pa rame te r s  c and k were considered to be the same in the regions separated by the 
combustion front, then the calculated and the measured  distribution curves  would not agree .  This suggests  
that p a r a m e t e r s  c and k have different values in those regions,  which follows f rom the physical  nature of 
the combustion p roces s .  

The values of p a r a m e t e r s  c and k before and behind the combustion front will be chosen so as to 
reconci le  as closely as possible the measured  t empera tu re  values with those calculated according to for= 
mula (9). Such a manipulation i s  entirely permiss ib le ,  since solution (9) is obtained for each region 
separa te ly .  

The curves  of longitudinal t empera tu re  distribution in the bed model shown in Fig.  3 have been ca l -  
c u l a t ed  according to (9) for  the instants of t ime 5.6 h and 6A h after  the s tar t  of combustion, corresponding 
to the front location at the dis tances 84 cm and 94 cm respect ive ly .  The corresponding measured  t em-  
pe ra tu res  are  indicated by black and white dots.  The matched values of c and ~ were c = l / m ,  k = 5 /m 2 
respect ively before the front and c = 3 /m,  k = 200/m 2 behind the front .  P a r a m e t e r  a ,  according to (8), 
was equal to 5. This comparison indicates a sa t i s fac tory  agreement  between tested and calculated values 
of model tempera tures ,  except near  both end sect ions.  An explanation for  the discrepancy at the inlet end 
is that in the theoret ical  solution the t empera tu re  is held equal to the a tmospheric  t empera ture ,  while in 
the experiment this condition is not observed on account of the r e v e r s e  heat flow along the metal l ic  shell. 
An explanation for  the d iscrepancy at the outlet end is that a vapor zone exists  before the combustion front 
in the physical  model, while the mathemat ica l  model does not account for phase t rans format ions .  

An increase  in the value of c before the combustion front is due to the higher  bulk heat capacity of 
the heterogeneous convective mass ,  as a resul t  of the formation of fluid fract ions (water, vapor,  oil, 
solvent, e tc . ) .  P a r a m e t e r  k depends, essential ly,  on the heat t r ans f e r  condit ions.  A fast  r i se  in the 
heat t r ans fe r  ra te  before the combustion front,  in addition to being related to the heat losses  through the 
insulation sleeve into the surrounding air ,  is  also related to the heat expenditure on various phase t r a n s -  
format ions  of the hydrocarbons ,  on vapor generation,  on heating up the sandstone matr ix ,  e tc .  

The tempera ture  distribution pat tern in a bed changes considerably during moist  and hypermois t  
combustion.  The addition of some quantity of water  into the air  supply (from 0.0001 to 0.002 m3/Nm 3) 
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causes  a sharp inc rease  in the bulk heat capacity of the convective mixture ,  and heat is t r ans fe r red  then 
to the foremost  region of the combustion front .  In this way, the heat utilization fac tor  during combustion 
i nc r ea se s .  Solution (9) with a corresponding choice of values for  a ,  c, and ~: r enders  a description of the 
t empera tu re  field and of the p roces se s  involved here .  

k is 
c a is  
c s is  

is  
x is the 

is the 
R i s the 
T is the 
T O is the 
Tf is the 
Ts is the 
t is  the 

is the 
v is the 
u is the 
M is  the 
7 is  the 

is the 

Ps is the 
Pa is the 
N O is the 
g is the 
Tm is the 
b is the 
5(x) is the 
U (x) is the 

NOTATION 

the heat t r ans fe r  coefficient;  
the specific heat of air;  
the specific heat of sandstone; 
the thermal  conductivity; 

distance along the tube; 
dimensionless  distance; 
radius of the burner  tube; 
tempera ture ;  
ambient t empera ture ;  
t empera tu re  at the combustion front; 
t empera tu re  of injected air;  
time; 
dimensionless  time; 
velocity of the combustion front; 
a i r  f i l trat ion velocity; 
concentrat ion of residual  fuel; 

thermal  diffusivity; 

dimensionless  tempera ture ;  
density of sandstone; 
density of air;  
concentrat ion of oxygen in air;  
heat of combustion of the residual  fuel per  1 kg oxygen; 
t empera tu re  at the inlet of the preheated model; 
con stant; 
Dirac delta function; 
unit function 
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